PHYSICAL REVIEW E

VOLUME 51, NUMBER 3

MARCH 1995

Microscopic theory of binary mixtures of uniaxial nematic liquid crystals

Agnieszka Chrzanowska
Cracow University of Technology, Institute of Physics, ulica Podchorgzych 1, 30-084 Cracow, Poland

Krzysztof Sokalski
Jagellonian University, Institute of Physics, ulica Reymonta 4, 30-059 Cracow, Poland
(Received 17 May 1994)

Based on the Bogoliubou-Born-Green-Kirkwood-Yvon hierarchy equations a microscopic theory
of binary mixtures of nematic liquid crystals has been derived. The resulting integral equations for
the equilibrium single-particle distribution functions are of the Hammerstein type. The functional
form of the free energy has been constructed on the basis of the state equations. A realistic soft
intermolecular potential is applied to the theory. A potential for two different molecules is proposed
as a function of characteristic parameters for molecules of the type A and B. A general discussion
of the stability conditions is presented for both homogeneous and heterogeneous mixtures.
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I. INTRODUCTION

Soluability of some liquid crystalline substances in
other liquid crystalline substances is the cornerstone in
custom design of the mixtures with tailored physical
properties. One of the best examples is the design of the
cholesteric serving as a working medium in liquid crys-
talline displays. The cholesteric pitch is easily controlled
by varying the proportions of individual pure liquid crys-
talline substances out of which the cholesteric in question
is composed [1-3]. Another good example is provided by
application of nematics in the hydrokinetic devices [4].
These devices as a rule require a working fluid with highly
anisotropic viscosity coefficients and high phase transi-
tion temperatures (a very wide temperature range for
the nematic phase). Chemically pure substances with
the desired properties are hard to find. Again the cus-
tom prepared mixtures easily meet the required technical
parameters. There are many similar examples.

All that has induced a great interest in how to de-
velop a theory of liquid crystalline mixtures suitable for
understanding the physical properties of mixtures and
thus helping in the design of mixtures with the prescribed
technical parameters.

Some microscopic models of binary nematic mixtures
are related to the Omnsager [5] theory of the isotropic-
nematic transition of a system of monodisperse thin hard
rods. Stroobants and Lekkerkerker [6] have extended the
simple Onsager model to mixtures of rodlike and disklike
particles. Using this approach Odijk and Lekkerkerker [7]
have successfully explained fractional effect, widening of
the unmiscibility region, and reentrant nematic-isotropic
transitions. The further development is the proof of the
existence of the isotropic-nematic-nematic triple point in
the binary system of the rigid hard rods (Vroege and
Lekkerkerker [8]) and tricritical point in the polar liquid
crystals (Szumilin and Milczarek [9]).

The other approaches, not related to the Onsager thin
rod model, are of the mean field type. The mean field
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type arguments are extended to cover the case of binary
mixtures and answer the question of how the biaxiality
on the molecular level can influence the bulk properties
of the samples (see [10] and the references therein).

In 1979 Stecki and Kloczkowski [11] generalized the
Onsager theory to a system of arbitrary molecules with
orientational degrees of freedom and interacting via an
arbitrary pair potential. This theory was applied to
many problems in liquid crystals. The examples are
the following: the statistical theory of the elastic con-
stants in nematics [12], the analysis of the isotropic
phase stability against nematic and smectic A phase for-
mation [13], and next—the unified theory of isotropic-
nematic-smectic A phases [14]. Then, one can mention
the theory of elastic constants in liquid crystals composed
of disklike molecules [15] and finally the unified theory of
static and hydrodynamic properties of nematics [16].

In papers [14-16] interaction between molecules was
described by a soft pair potential of the Corner type [17].
This potential when inserted into Stecki-Kloczkowski
theory leads to realistic and, what is important, analytic
description of the pure substance nematic liquid crystal
properties. The purpose of the present paper is to extend
this description for nematic binary mixtures.

The starting point is the Liouville equation for
(N4 + Np)-particle distribution function FV4V8  which
is formulated taking into account rotational degrees
of freedom. By introducing reduced distribution
functions F'$4-58 the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy of coupled equations for
FS4:58 for the mixture is obtained. From the analysis
of the first equations of the BBGKY hierarchy for the
single-particle distribution functions F;(A) and F;(B)
in the equilibrium case the set of two state equations
is derived. Taking the limit that density of nematic B
approaches zero this set transforms into the previously
elaborated [18,19] Hammerstein equation of state for the
unary nematic. It is shown that the two-particle cor-
relation function must be of the simple form e AUz
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where Uj; is the interaction potential. Since solutions
Fy(A) and Fy(B) for the equilibrium state must satisfy
the conditions for minimum of the free energy of the sys-
tem it is possible to obtain the full expression for the
free energy for the nematic mixture. Its structure is
formally in agreement with the formula of Stecki and
Kloczkowski [11] for the uniform system and becomes
equal to this formula taking the limit dg — 0.

In the following sections the stability problem is dis-
cussed in detail. Since it frequently happens that the
stability analysis in liquid crystals is not provided in the
completely correct way, all necessary conditions are dis-
cussed and all misunderstandings are clarified. Especially
we pay attention to the Gibbs-Duhem relation which for
the case of nematics, to our knowledge, has not been
properly presented so far. Statistical microscopic theories
should be in agreement with thermodynamical premises
so this relation can be treated as a check of correctness
of considerations.

The Ruijgrok potential [17-19] and its generalized
form for two different molecules is shown to be easily
applied to this theory.

II. THE EQUATIONS OF STATE

The state of a molecule of nematic liquid crystal can
be described by the center of mass motion and rotation
of the long axis. Thus let 7 be the position of the center
of mass of the molecule, ¥ its velocity, 7i the orientation
of the molecule, and €} the angular velocity. The change
in the orientation dii resulting from rotation through the
infinitesimally small angle 6(;—; is equal to dii = 6_5 X 7.
Hence ‘Z—f = x 7, with angular velocity ¢ = %‘f. The
angular momentum M can be represented in the form
M= Jﬁ, where J denotes the tensor of inertia. The set
T; (r';,ﬁ;,ri'i,Mi) can be regarded as the phase of the
molecule 1.

Let us take into consideration a mixed system of N4
particles of the kind A and Np particles of the kind B.
The system is described by the (N4 + Np)-particle dis-
tribution function: FN4NB(zy, ... 2N, ,Z15,--+,TNg)
in 10(N4 + Np)-dimensional I' space, the phase space
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of all N4 + Np molecules of the system. The probability
distribution FN4:N5 is normalized as follows:

/FNA,NdelA...d;ENAdmIB--'dJ)NB =1, (1)
r

+oo +oo o
/dwi =/ dr:-/ dﬁ;/ dﬁ;/ i, (2)
%4 — o0 Q, —o00

The time evolution of FV4:V8 is given by the Liouville
equation [21-24]:

with

OFNa,NB

et {Hn, Ng, FN0N5} =

, NaN
—iLy, Ny F747E,

(3)

where { , } are the Poisson brackets, Hy, vy is the
Hamilton function of the system, and Ly, n, is the
Liouville operator.

The Hamilton function of the system reads

N L
3% (£ Ty
2mA 2

ia=1
Np 2 Mz ‘7—1]\‘4{
+ Z Dig + isvYB iB
sz 2

1 4 1 Y5
AA BB
SR ST

s=1,t=1 s=1,t=1

HNA,NB =

Na,Ng

PR Jead (4)

s=1,t=1

!
2

The indices i, s,t label the particles and ® is the inter-
action potential energy of a pair of molecules. Using the
conservation law for phase density in I" space when mov-
ing with the phase point:

dFNa,NB
—_— =90 5
7 (5)

we can derive the Liouville equation for the mixture:

OFNa:NB N OFNa,NB . + OFNa,NB ., + OFNa,Np . OFNa:Ns -,
— 7 = ; —— i, + —=—M;
at = 87—"’1’4 TA apiA pzA aniA TA aMiA A
P 3 [OENNe | OFNANe | OFNANs L | OFNuNe
- i = f = n; — = My
ip=1 6ri5 e ap’iB B ania i aMz e
OFNa:NB

where the Poisson brackets are written in x; :

- ot - {HNA,NavFNA’NB} =0, (6)

(73, B5, 703, M)

We can obtain the explicit form of the Liouville operator for the mixture by the use of the Hamilton equations:
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T =1,
=J M x @,
- _OHN, Ny
or
ﬁ _ _aHN‘:,NB — _fix BHN?NB’
8¢ on

where the following variational relation has been applied:

OH . (. OH

Thus the Liouville operator reads

N, - N N
—Lkin = ZA Pin 9 _ iy X Tt .9 + ZB Pig 0 _ flig X Tg* .9
Na,Np ma aﬁ,A 1A A lA 8ﬁiA -y iB B lB 6"-?:1‘8 ’

mp OF;
ia=1 ip=1 B iB

Na,Na 1 NB»NB Na,Ng
. rpot _ AA AB
LR N, = 3 SO+ > 308+ Y ef
i#j i#j i#j

Na,N AA AA
&t (a% o 0%t o . 9%4t 9 . 9BAt B )
2

— i X i X —(—— =
2 v, op: « or op; " o onk, 0 0n; oM,

NB,NB (aq,BB 9 aq;.gB F) . 3@53 P . xa@gB p) )

+ +n; X j = =
; or; 0Op; or; Bp,- on; 3Mi 7 oni; OM;

Na,Np (3‘533 9 8@;‘}3 F) . aq,:;B 9 . 3@2433 P )

iy S — 55 T X =t X
;j 87',; 6]).‘ 61"]‘ 8])]' an, BM,L 7 871,_.,' aM]

where, for instance, @;‘}A denotes

ohA 0®54 o 9®5* o b x 0254 8 it x 0854 8
44 — P —_— n; - = i ~as TS -
or; Op; or; 0p; o, oM; ’~ 9d; OM,

—

Let us introduce reduced distribution functions by
S4,S _ Na,N.
F~4 B(IflA,. ..,ISA,.'I)IE,...,:L'SB) = C/ F4 BdiL'sA+1 . "dwNAdeB-f—l . "dCENB,
T

where C = (4nV)S4%58 and V denotes dimensionless volume.
The BBGKY hierarchy [21-25] of coupled equations for the F54:55 reads

OFSaSs Sa,S Sa+1,8 5a,S5+1
o Hsasp BT = E /915A+1F 4 BdfvsA+1+—§ CH Y e

Z/@z Z ., IFSA’SB+1deB+1+_Zf@SA+1JFSA+1 SBd(l:s 1,

where d4 and dp denote number densities of particles A and B.

The first equations of the BBGKY hierarchy for the single-particle distribution functions are the following:

1,0 d
agt _iLl’OFI,O Zﬁ/@ Fz’ode‘ZA 43/9 Fl’ldmls,

oF%t d d
5 —iLo  FO! = B/@ffF" 2dz,, ﬁ/;@f’fFl’ldmlA,
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o
or in terms z; : (7, pi, 1;, M;):

OF (14) P, OF(1a)

. 1.0 OF(la)  da P4 OF(14,24)
_ _Pia Y9\ A) 07, . _/ 12, )
ot ma or. a X Ta M —amm n | e N
-|—’ﬁ:1A « 6?"12 6F(1A»2A) + d_B 8@1‘12 . 8 (lf,].B) —I—'fi . % 8?12 . ( 143 B) dwls,
oniy , OM;, or, OP1, oniy , oM, ,
(16)

OF(lp) _ _P1p 9F(5) 1 (13) /
ot me o, T e XJp My g T an .

i o058 _9F(1p,2B) de,
18 8”13 6M15

098P OF(1p,28)
I O,

+____

AB
da [a@ OF(1a1p) | . 0% 8F(1A,13)}dz1“

01, 0P, X O, oM,

where
F(14) = F*° = F1(7a, Pa, 7ia, Ma),
F(1A7 23) = Fl’l = FZ(FAyﬁAaﬁAyMAaFBaﬁBaﬁBvMB)'

We can represent the two-particle distribution function as F, = F;Fjg. and assume that the correlation function
g has the following form:

ge = e PUiz (18)

This form of g., as it is shown further, leads to the state equations consistent with the phenomenological thermody-
namics.

In the equilibrium state the momentum dependent terms have the well-known form of Gaussian function (Maxwell
distribution function). So we can write

) B
F\(Ta,Pa,7a, Ma) = F1(Fa,7i4)Ce\ ™ e(-BMT TN (19)

_, — 2 —
where C~1 = fe‘ﬁMTj_lMe“ﬁzL;nAdﬁdM (B =1/kT).
In the case of equilibrium (4£ = 0) Eqgs. (16) and (17) read

_ Pia [ 1 6F(1,) 8 d_A/ AA _dB [ .aB
0= mAF(lA) l:F(lA) = a,,—,olA an f12 F(2A)dx2A 4n /flz F(lB)da"ls

87"1A

= —1 a7 1 aF(lA) _ o d_A AA / AB
+TL1A X JA M]_AF(lA) [F(IA) 8ﬁ1A 8’ﬁ,1A an f12 F(2A)dCL'2A f F 1B)d.’L'lB , (20)

0= Ir:B F(1p) - [F(iB)agr.(,llB) a7 (dB/f 3P F(28) dsz—dA/flAzBF(lA)dmlA)]

. 1. 1 OF(1 7]
Hily x Ty W (1) - | s e = o= (52 [ $P P Co)dna, — 32 [ PP, )| 1)
B B

where fi, is the Mayer function fi; = e PV —1, F(14) = d . R .

F(7a,74), and F(1g) = F(TB,nfg) (ta) InF(7y,, 1) — -2 /fBBF Tag, T2y )dT2, dita,
Setting both subexpressions in Eq. (20) and both

subexpressions in Eq. (21) to zero, then integrating the /fABF i, 71, )d7y  diiy, = constp.  (23)

resulting four equations, we derive the following set of ara . .

equations for the single-particle distribution functions:
4 In that way we have achieved the equations of state for
In F (7 ,,71,) ca /fAAF Ta,, M, )dis , diis the mixed nematic system.
Assuming that dp passes to zero Egs. (22) and

dp AB ~ L (23) reduce to the previously elaborated [18,19] Ham-
T4 /f1z F(715,715)dr 5 di1 5 = comsty, (22) merstein equation of state for the unary nematic.
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III. THE FREE ENERGY

In order to find the general expression for the free
energy for the mixture it will be convenient to rewrite
(22) and (23) in terms of distribution functions p4 and
pp normalized to the total numbers of particles:

Jopadiadiia = N§°P,
(24)
Jr pBdFBdiig = NE°®

where p = £ F(1).
Thus the state equations read

lnp(FlA’ﬁlA) - /féAp(FzA’ﬁzA)d’FzAdﬁzA

- / FABp(71, , firy )dis, dity, — consta, (25)

lnp("?lavﬁ\ls) "/lezBp(FZB’ﬁZB)dFZBdﬁ2B

/‘f12 p(71,,71,)d71 ,d7i1, = constp. (26)

Functions p4 and ppg for the equilibrium state should sat-
isfy the conditions for minimum of the free energy of the
system under the constraints that they are normalized to
the numbers of particles and the considered process has
isochoric V=const and isothermic T'=const character.

0A
=,
dpa
(27)
sA
= =0,
dpB

where the functional A is the free energy enriched with
the Lagrange conditional terms:

A=F -4 ( / padiadiia — N§‘°b)
r

s ( / ppdipdip — Ng‘°b)
r

Ay (V — VEP) — \p (T — TE*P), (28)

where A4, A, Ay, and Ar are the Lagrange undeter-
mined multipliers.

From (25)—(28) we deduce that the expression for the
free energy for the mixture is the following:

,Bf‘:: /[lnplA — 1]P1Ad7?1AdﬁlA + /[hlplB — l]plngIBdﬁlB - % /fAAplApzAd’l—"lAd’r_ilAszAd’f_izA

—_/fBBplap2BdF18dﬁ13dF2Bdﬁ?a _/fABplApldelAdﬁlAdFladT_ilB (29)

and the Lagrange multipliers A4 and A must be equal
to the relevant constants in (25) and (26).

A4 = constg4,
(30)
AB = constpg.

Structure of the free energy is formally in agreement with
the formula of Stecki and Kloczkowski [11] for the unary
system and becomes equal to this formula taking the limit
d B — 0.

IV. STABILITY ANALYSIS
FOR NEMATIC BINARY MIXTURE

The free energy for the system under consideration is
dependent on the following variables:

F =F(pa,pB,V,T). (31)

In the equilibrium state the distribution functions
pa and pp are transcendental functions of variables
T,V,Ny,Np. As it is shown in Sec. IX, the distribu-
tion functions have the following forms:

d
pa = ﬁexp (ao + ajcos?04 + azcos?O, + a3c0860A) R
(32)

pPB = Z—Eexp (bo + bicos?0p + bycostp + b3c05603) ,
where 6 is the angle between the director and the long
axis of a molecule and the coefficients a; and b; play the
role of order parameters which are also transcendental
functions of variables T,V, N4, Ng. In nonequilibrium
we will regard them as degrees of freedom connected with
anisotropy and ordering. Thus the free energy is a func-
tion [compare Eq. (29)]:

fzf(ai,bi,NA,NB,T,V). (33)
The infinitesimal change in the free energy is
OF oOF oOF oOF
= — — — ——dN,
dF aT dT+8 d‘/'-‘lh(9 dNA+6NB B

3 L+ 5 @
7
where 2 = 1,2, 3.
By the use of the thermodynamic definitions for pres-
sure, entropy, and chemical potentials:
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_ oOF The sufficient stability condition requires the positive
P=\"av INAN ’ (35) determined second differential form d?A4 :
\N4,Np,eq
OF
N i 2
S_( aT)VNA _ (36) d?A = ZBYBY dY;dY; = ZM,]deYJ, (44)
AN B, i3
oOF
Ha = ON4 ) (37) where Y; = V,T, N4, N, a1,az,as, b1, by, bs.
T.V:Ns.eq This condition is satisfied if all the eigenvalues of the
ug = (_Q.]i) , (38) matrix M are positive or, equivalently, all the leading
ONp T,V,Na,eq minors of the matrix M are positive:
i d;
the general expression for dF reads My, >0 %;i %:Z >0, ... DetM > 0. (45)
dF = —SdT pdV+lLAdNA+quNB
Z (39) In order to check the sufficient stability condition we

In the case considered in our microscopic approach the
system is described by the free energy A (28) which in-
cludes the influence of certain restrictions.

Let us reiterate the restrictions imposed on the system:

T = Tglob’
V = Vglob’
(40)

[ padiadia = NE,
r

- - glob

/derBdnB = Np°~".
r

Under these restrictions the change in the free energy dA
reads

dA = Z —da,

+(S - )\T)dT + ([LA — AA)dNA + (;I,B — )\B)dNB,

Z—db +(p— Ay)dV

(41)
where
oA _ oOF o glob
da;  da; B EEAA (/ pad(la) — Ny ) ’
(42)

oA _ OF o glob
b ~ 9b; 96 " (/”Bd(lB) N5 )

Analysis of the terms (43) is presented in Appendix A.
It shows that the condition (27) is equivalent to the fol-
lowing set of equations:

0A
Ba,- - 07
(43)
oA
ab; 0-

where 7 = 1,2, 3.

The necessary condition requires that d.4 must van-
ish. This requirement determines values of the Lagrange
multipliers A4, A, Av, and Ar.

have to calculate expressions for all elements of the ma-
trix M then, taking into account a particular interaction
potential and solutions for a; and b;, find their values and
obtain desired eigenvalues or minors.

V. TYPES OF SOLUTIONS
OF THE STATE EQUATIONS

The state equations (27) [or have a look for their ex-
plicit form (25) and (26)] may have different types of
solutions for the distribution functions. First of all they
are always fulfilled by the trivial solution of the isotropic
phase (I) (a; = b; = 0). Within a certain range of vari-
ables T, V, N4, Ng we can encounter nontrivial solutions
(as, b; # 0) which correspond to anisotropic phases (V).

The following solutions of the state equations are pos-
sible

(1) The sufficient condition is not satisfied for any so-
lution. It means that the considered example is nonreal-
istic. One should consider the phase separation problem.

(2) The condition (45) is satisfied only for (I) solution.
Thus the mixture is homogeneous and isotropic.

(3) The condition (45) is satisfied for (V) solution and
not for (I). Then the mixture is homogeneous and ne-
matic.

(4) The condition (45) is satisfied both for (V) and (I)
solutions. When the solution (V) has lower minimum
than (I) then the mixture would be in the nematic state.
When the solution for (I) is deeper, then the system is
isotropic.

(5) The state equations can have more than one ne-
matic solution which may also fulfill the sufficient condi-
tion. Then the mixture will exist in the state with the
lowest free energy.

It may happen that the homogeneous state is not of the
most important preference. Then we will deal with the
case of the spontaneously broken symmetry in the phase
separation. It means that the free energy calculated for
different separated phases has lower value than for the
homogeneous state provided that the condition (45) ex-
tended for the phase separation case is also fulfilled. The
problem of the phase separation must be added to the
analysis of all the above mentioned possibilities. In the
next section we will discuss in detail the phenomenon of
the system exhibiting separated phases.
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VI. PHASE SEPARATION

Let us analyze the case of the binary mixture exhibit-
ing two different phases I and II.
The free energy has the form

fzf(PA,PA,PB,PB;VI VU TI TH)
= -7:(10,47931‘/1 TI) +~7:(PA ,PB VI TH)
=Fl 4 71 (46)

For now and for simplicity we do not take into account
the surface tension.

The restrictions imposed on our system are the follow-
ing:

/ pldidi + / plldiidi = N&°P, (47)
/ pLdidr + / pH diidi = N&°P, (48)
]
= (uh — AA)dNA + (ph /\A)dN” (sf

+(p" V”+Z

The necessary conditions read

6.A_0 tS.A__O J.A_O A _

A 1738 spll — ST T
—)\AZO, ugl—/\3=0,
(54)
ph—Aa=0, ph—Ap=0,
pl = Ay =0, p!f —Ay =0.

They establish the state equations for the considered
phases and requirements that the chemical potentials for
each kind of particles must be equal in each phase and
both the pressure and the temperature of each phase
must be the same.

The sufficient condition stands that all the leading mi-
nors (or eigenvalues) of the following matrix:

9%A
M, ; = 55> 55
37 aXlaX] ( )
where X; = TT VI Ni N}, of o, T VI NI NE,
all, b1, must be p0s1t1ve

VII. GIBBS-DUHEM RELATION

The consistence between thermodynamic and statisti-
cal descriptions is best proved by checking the Gibbs-
Duhem relation. Since not very much attention has been
paid to this feature so far and sometimes it happens that
it is introduced in a nonaccurate way, we will here put
forward its phenomenological form in detail and in the

d +Zab1db1 Za Hd”JrZabH

2301
VI + VII — Vglob’ (49)
I _ Tglob, (50)
TII — Tglob. (51)
The free energy with Lagrange terms is as follows:
A=Fl 4 FIT Ay (VI 4+ VI —yeleb)
—Aq: (TT — T8"P)
“Aa ( / oL, diidi + / Pl diidi* — NA)
—Aqu (T — TElP)
- (/pIBdﬁdF+ /pIBIdﬁdF— NB) , (52)

and, accordingly, the change in the free energy d.A has
the form

Arr)dTT + (s” AT”)dT”+(pI—,\V)dV’

(53)

next sections we will introduce its microscopic represen-
tation.

The origin of all versions of the Gibbs-Duhem relation
is the scaling of the thermodynamic potentials as far as
extensive parameters are concerned. In the case where
the free energy is used, as it almost always happens in a
liquid crystal (LC), these extensive parameters are num-
bers of particles and volume. We cannot restrict our-
selves to the isochoric process since the change in density
may be much preferred by the system.

The scaling rule reads

.7'-(T, /\V, /\Ni,ai,b,-) = /\f(T,‘/,Ni,a,‘,bi), (56)
where A denotes scaling factor. Taking the derivative of
(56) with respect to A and then setting A equal to unity
we obtain '

F=-pV+> N, (57)
So the derivative of F should be the following:
dF = —dpV —pdV + > " p;dN; + > Nidpi.  (58)
On the other hand dF has the form
dF = —pdV — SdT + Z ;L,-dN»
Z da, + Z (59)

Comparing (58) and (59) we come up with the expression
for the Gibbs-Duhem relation:



2302 AGNIESZKA CHRZANOWSKA AND KRZYSZTOF SOKALSKI 51

0=—Vdp—SdT = Nydp; + %dai +> Zf:dbi.

(60)

This form of the Gibbs-Duhem relation should be taken
into account whenever considerations are based on the
free energy.

The term (—Vdp) is as important as the terms with
chemical potentials but it often happens that it is dis-
regarded. When this term is omitted the whole Duhem
relation is no longer valid. If it is still treated as valid
it cast shadows on the values of chemical potentials [8].
As it is shown in Sec. X the Gibbs-Duhem relation is au-
tomatically fulfilled if we use microscopic expressions for
the desired terms.

VIII. INTERACTION POTENTIALS

The construction of the mixture theory requires deter-
mination of three two-particle potentials of interaction:
UAA UBB UAB, Functional dependence of the poten-
tial we use for two uniaxial identical molecules was pre-
viously suggested and elaborated in [17]. It has the form
of a Lennard-Jones type interaction:

os[@)-C) @

where 7 is a vector which separates centers of two
molecules and o is a function dependent on orientations
of molecules and on the unit vector A pointed in the
direction of 7

o = 0o(1+S1(A - 71)2 + 51(A - 7i2)? — Sa(7y - 712)? + Ss(A - 751)%(A - 733)?), (62)

where og, S1, 52, S3 are phenomenological parameters. (For explanation of 5, i1, 72 see Fig. 1) This form has been
derived for two identical molecules and is symmetrical as far as the change of molecules is concerned.
We have assumed that the interaction between two different molecules has analogous form as (61) and (62). In that

case o should read

o0 =0o(1+ SAB(A - 7,)% + SAB(A - 715)? — SPAB (7, - 712)? + SAB(A - 721)2(A - 73)?) (63)

where parameters S{*B are functions of relevant param-
eters S and S characteristic for molecules of the kind
A and B (for justification see Appendix B):

A B
AB _ Og t0g

) = 2 I (64)
1
AB __ AQA B gB
S _7064‘*‘003 (0'052 +0052), (65)
1
SAB,:i AsA BsB , 66
3 oA+ oF (0483 +0557) (66)
A

FIG. 1. Illustration for symbols in Eq. (62).

1
AB Al oA A A
577 = m[“o (251 — S5 +5%)
+05 (S5 — 53)], (67)
AB BoaB B B
Sii = ‘764—+;o§[00 (287 — 83 + 57)
+03'(S5 — 53] (68)

In the theory of one-component systems the same
parameter S; describes two terms: S; (.& - 11)? and
S1(A - 7i3)%. In the case of interaction of two different
molecules we have to distinguish between S; due to the
molecule A and S;; due to the molecule B. If we know
the characteristics of the molecule A: S{, S3, Sg“ and B:
SE,S8B, 88 we can immediately say what the change in
interaction due to o is. This is the starting point of our
further considerations.

IX. THE SINGLE-PARTICLE
DISTRIBUTION FUNCTIONS

Let us focus our attention on the state equations for the
mixed system (22) and (23). In search for a solution of
this set of equations we now restrict ourselves to the case
where f(71,,71,) and f(71,,71;) are uniform in space
and axially symmetric around a fixed direction. Choos-
ing the positive z axis of our coordinate system in this di-
rection, f(14) and f(1g) will be functions of cosf;, cosf,
only, where 04, 0, are the polar angles of 7i;, 7is. Moreover
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because the head and tail of a molecule cannot be told
apart, f(14) and f(1p) are even functions of z; = cosf,
and 2 = cosf. Then Egs (22) and (23) can be written
as

d L oaa
lnf(a:lA) Zﬁ‘/‘flAzAf(mZA)dT2Adn2A

/fABf Z1,)dr1gdry, = consty, (69)
h'lf Els) — ——/f Bf :EZB dT‘zBdnzB

—Z—;% /f1 Bf(zlA)drlAdnlA = constg. (70)

Because of the potential form U, = U(o/7), the radial
integrations in (69) and (70) can be performed analyti-
cally:

f [e=sUte/m —1] r2dr = %USB;(T*). (71)
0

The reduced second virial coefficient B3 (T™*) is a function
of the reduced temperature T* = kT /e.
Using abbreviations

A4 = £ (08P BIAA(T*)da,

ABB = % (o8)3B3BB(T*)ds,

(72)
A\AB — %(0643)335.43(11*)(1[17
)\BA — %(0(343)3B;AB(T*)dB

Egs. (69) and (70) become

1
lnf(mlA) - AAA/;) KAA(:ElA’y2A)f(y2A)dy2A
1
_"\BA/ KAB($1A,le)f(le)dy15 = consty, (73)
4]
1
lnf(xls) - )‘BB / KBB(xlB’yzB)f(y2B)dyzB
0

_)\AB A CKAB(2, 1) fyn)dus, = consty, (74)
with symmetric kernels of the type
K5T(e,) = =5 [0+ 557K ) + SR - 7a)?
— 857 (7 - 7ia)?

+85T(A - 7y) - (A - 7)) PdgadA,  (75)
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where S,T = A, B.
K ST(:c,y) is a polynomial of sixth order in z,y of the
form

3
Z aijxZiyzj. (76)

2,j=0

KT (z,y) =

The coefficients aij have been calculated analytically
[20] by the use of the algebraic computer program
MATHEMATICA. They are again polynomials now in
S3T 85T 85T of order not higher than three. Equations
(73) and (74) can be expressed further by introducing the
functions

PY(z1,) =In f(z1,), (77)

=Inf(21,)- (78)

K‘(wla)

Kernels (75) show that ¥(z1,) and k(z1,) must be of
the form

_ 2 4 6
P(r1,) = ap + a1z], + azz], + asxy,,

K,({Bla) = bg + blil?fs ~+ bg:l:‘llB + b3:13f1;B.

Introducing the functions GY7:

GfT(y) zyZJaST (80)

into the kernel K,
3 .
K5 (z,y) = > 2 G7T (y), (81)
i=0

we can derive the following algebraic equations for the
coeflicients a; and b;:

a; = AAA / GAA FA(y)dy + 4B / GAB 1B () dy,

(82)
b= A28 [ GPR£P(g)ay+ 374 [ GAP fAw)dy.
Equations (82) together with normalization conditions

1
2 4 (]
[ emrerstarmstaranstage, <1, (83)
0

1
2 4 [
/ €b°+a1213+b2w15+b3z13d$13 =1 (84)
1]

determine completely the distribution functions. Coeffi-
cients a; and b; can be treated as the order parameters.
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The connection of them with the traditional order pa-
rameters defined by the Legendre polynomials are the
following:

i =Aaa Za Ay¥)a + Aas Za Bly*)p, (85)
b; = App Za Bly*)g + Apa Za Ay¥)a, (86)

i=o0
where y = cos 8, (y*7) = [y% f(y)dy, and

J
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(?) = 51+ 2(Py)),

N

(7 + 20(Py) + 8(Py)), (87)

&

537 (33 + 110(Py) + T2(Ps) + 16(Ps)).

X. MICROSCOPIC EXPRESSIONS FOR THE
PRESSURE AND CHEMICAL POTENTIALS

The expression for the free energy (29) can be rewritten
in the form

BF = NAln(4]VV> NA+NBIII(4]VV) NB+NA/ f IEA ln[f(mA]dmA+NB/ f xrp ln[f(a:B]d:cB

1 1
oy VO [ K@ 0 @) fundzadus - 5 NENP [ K(on,um)f(e0)f (va)dendys

1 - 1
~V*NANB)\AB/O K(za,yB)f(za)f(yp)dzadys, (88)
where AST = 5T /d.
From that it is easy to find molecular expressions for the chemical potentials and pressure:
816-7: NA ! NA TAA /1
= 3N, = ypyd - = K dypd
Bra aN, 1n(47rV) +/0 In[f(za)]f(za)dza — 72 A (xa,ya)f(za)f(ya)dypdza
Np AAB ! K durd %9
7 A (za,yB)f(za)f(yp)dypdza, (89)
OBF N
Bus = ‘3%3“ ( ) / f(zp)In[f(zpldzp — "E)\BB/ K(zp,yB)f(ys)f(zp)dyadzs
Nasas [
v A | K(za,y8)f(ya)f(zB)dyadzrp, (90)
OBF N N,
Pp=- aﬁv - VA * _VE - WNA)‘AA/ K(za,y4)f(za)f(ya)dzadya
ZVzNB)\BB/ K(zp,yp)f(z5)f(yp)drpdys — 7 NANB/\AB/ K(za,y8)f(x4)f(yp)dradys. (91)

Let us write the Gibbs-Duhem rule in the form chosen
as follows:
dp
dN 4

dHB
BaAN, A

dua

V—
dN4

— Np—t4 =0, (92)

where we have divided the original form by d/N4 in order
to obtain terms with derivatives. Inserting the micro-
scopic expressions (89)—(91) into (92) we notice that it
becomes identity.

XI. CONCLUSIONS

In the present paper we have introduced a systematic
derivation of the state equations for a nematic liquid crys-
tal binary mixture. We have started from the Liouville
equation for (V4 + Npg)-particle distribution function
FNaNB which is generalized to the case with rotational
degrees of freedom. By introducing reduced distribution
functions FS458 the BBGKY hierarchy of coupled equa-
tions for F5452 for the mixture is obtained. From the
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analysis of the first equations of the BBGKY hierarchy
in the equilibrium the set of two state equations is de-
rived. The assumption that the two-particle correlation
function is of the form e~AU12, where Uy, is the interac-
tion potential, leads to the second virial expansion for the
free energy which contains the direct correlation function
having the form of the Meyer function.

The realistic intermolecular potential of a Ruijgrok
type is applied to the theory. It has been shown that
such a theoretical model can be easily solved. The result-
ing solutions for the single-particle distribution function
have exponential form with the sixth order polynomial of
the order parameters. The single distribution functions
carry all necessary information about the system. By us-
ing of them we can obtain a number of static properties
of the system such as order parameters, phase transition
temperature, elastic constants, and viscosity coefficients.

Besides the knowledge of the potential for molecules
of the same sort the presented way of solving the state
equations also requires knowledge of the potential for two
different molecules. Usually such a potential is assumed
separately. We have proposed the special form which
emerges directly from the form of the potential for the
molecules of the same kind which makes our theory more
realistic and consistent.

The microscopic state equations allow us to reconstruct
a thermodynamic potential which is in full agreement
with other theories. Given the right form of the free en-
ergy we can formulate stability analysis in general form.
General means taking into account the role of order pa-
rameters as freedom degrees in necessary and sufficient
stability conditions.

We briefly discuss all types of possible solutions for the
binary mixture. We pay special attention to the case of
spontaneously broken symmetry when the phase separa-
tion is a more preferred state than the homogeneous one.
We test consistency between thermodynamic and statis-
tical approaches by using the Gibbs-Duhem relation.

We would like to emphasize that, to our knowledge, so
far nobody has considered the influence of order parame-
ters on the sufficient stability conditions. It may happen
that all the leading minors containing derivatives with re-

J
A _ (OF af(x)
da; (a —AaNa / da; da’)

spect to N4 and Np are positively determined whereas
at least one minor containing the derivative with respect
to an order parameter is not positively determined. Such
a situation would correspond to the unstable solution.

The classical theory proceeds by postulating a contin-
uous variation of the leading minors,

',_f’z_f‘_ (93)

(where X,Y = T,V, N4, Ng) from stable states, where
they take on positive values, to unstable states, where
at least one of them takes on negative values. These

~ two regions are separated by the limits of stability, the

so called “spinodal curve.” The critical phase is a stable
one lying on the spinodal curve.

Our general approach allows us to consider spinodals
determined by the conditions including derivatives both
with respect to concentrations and order parameters:

' 9%’A

=0, (94)

where X; =T,V, N4, Np,a;,b;.

Therefore there are possible different types of spin-
odals corresponding to different types of vanishing mi-
nors. Also in [20] we investigate spinodals of different
ranks determined by the number of vanishing minors.

To sum up we would like to remark that this paper
contains complete theory to provide statistical analysis.
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APPENDIX A

The terms containing order parameters which appear
in the free energy (dA) are the following:

=N [ [ (4 v) Flnlf(e0)] = N4 [ KA4(@a,00)f(0a)dys = NP4 [ KAP (00,u5) f(um)dun —~ Aa

and

8A _ af
ab;

o) 1)

(A1)

— Np /31’(“’)[ (4 V) +In[f(zB)] — ABB/KBB(xB,yB)f(yB)dyB

—\AB /KAB(xA,yB)f(yA)dyA - /\B}

(A2)
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The necessary condition states that the above inte-
grals must vanish, which means that the expressions in
parentheses are zero, which reconstructs exactly the state
equations (25) and (26). That means that the following
conditions are equivalent:

6A
— =0,
dpa
(A3)
6A
— =0,
dpB
and
0A
8(1,; - 0’
(A4)
oA —o,

ob;

where 7 =1, 2, 3.

APPENDIX B

The Lennard-Jones potential U(z) is strongly repulsive
for £ < 1. Setting r = o (that is = 1) in U we obtained
the U = 0 equipotential surface. The surface depends on
relative orientation of the interacting molecules. As the
potential U(z) rapidly increases for z decreasing from
z = 1 to zero, we assume that the equipotential surface
U(z) = 0 defines the excluded volume.

If we consider the closest approach of two molecules
described by ST, S5T, and S5T for which we choose
the point when potential U;; is equal zero (r = o) we
obtain equipotential surfaces described by the following
equations:

00% =1+ 57T cos®0+ SPT cos? 0 — S57 + 557 cos 0

(B1)

in the case when molecules are parallel to each other (7
and 7, parallel to the z axis) and

—;T =1+ 57T cos?0 + 7T sin? 0 + S5 T cos? fsin?
%o

(B2)

=6

FIG. 2. Characteristic relative orientations of molecules for
calculation of the potential parameters.

in the case when molecules are perpendicular (7; parallel
and 7i; perpendicular to the z axis), where 8 is the angle
between A and the positive direction of the z axis.

On the other hand we can express the closest approach
in terms of geometrical parameters such as length and
width. From Fig. 2 we can see that it is possible to
attribute to the equipotential surface three characteristic
parameters: width D, width d, and length L. Setting
0§ =7/2 and r = D in Eq. (B1) we obtain

_ S
D:cros(l 252) (B3)
whereas setting # = 0 and » = L we obtain
S _ ¢S s
L:ag<1+2$1 252+53). (B4)
Setting @ = 7/2 and r = (L + d)/2 in Eq. (B2) we
obtain
5 _ ¢S
a= (w) (85)

Analyzing geometrical configurations (Fig. 2) for two
different molecules whose equipotential surfaces are char-
acterized by L4, D4,d4, LB, DB dB and by the use of
conditions (B1) and (B2) we can derive expressions (64)—
(68) for S{AB, SAB S4B, S4B, These expressions should
be in agreement with the requirement that vanishing of
parameters S and SZ implicates vanishing of SAB.
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